Electrical conductivity of hungarian honeys

N. Czipa, B. Kovács

University of Debrecen Faculty of Agricultural and Food Sciences and Environmental Management

czipa@agr.unideb.hu

Keywords: electrical conductivity, honey, botanical origin Abstract. The aims of this present study were the determination of electrical conductivity and mineral content of different honey types and the examination of the relation among the floral origin, electrical conductivity and element content. Electrical conductivity and 13 elements (K, Ca, Mg, Na, P, S, Al, B, Ba, Cu, Fe, Mn and Zn) were determined with digital conductivity meter and ICP-OES) in seven honey types (acacia, lime, silk grass, sunflower, rape, chestnut and forest). The values of the electrical conductivity ranged between 0.101 and 1.036 mS/cm. The lowest values were measured in the acacia, silk grass and rape honey samples and the chestnut and forest honey samples showed the highest values. The electrical conductivity showed strong correlation with K, Mg and S (r = 0.975, 0.856 and 0.802). It was possible to determine the botanical origin of the case of the lime and sunflower honey types was able to determine by measuring their electrical conductivity.

INTRODUCTION

The honey production in the European Union (EU) was 191,119 tons in 2012. The greatest producers were Spain (29,735 tons) and Romania (23,062 tons). Hungary was the third most important honey producer in the EU with 17,000 tons in 2012 (FAO). About 80% of total amount of Hungarian honey is exported to abroad, to the different countries of the world.

Honey plays an important role in the human nourishment. This food contains many important constituents such as sugars, acids, proteins, vitamins, enzymes, micro and macro elements. The honey is not only a food but it is a very good environmental indicator. Honey can provide environmental data from the collecting area that is about 7 km² (Pisani et al., 2008).

Electrical conductivity is a very important property of a honey because it is used to distinguish between floral and honeydew honeys (Kaškonienė et al., 2010). The electrical conductivity is closely related to the mineral salts, organic acids and proteins (Terrab et al., 2004). According to many authors the measurement of electrical conductivity instead of the time-consuming gravimetric method is an indirect technique to the determination of mineral content in some food (Acquerone et al., 2007).

The aims of this present study were: (i) determination of electrical conductivity and micro and macro element content of different honey types (acacia, rape, lime, sunflower, silk grass, chestnut and forest); (ii) examination of the connection among the botanical origin, electrical conductivity and mineral content.

MATERIALS AND METHODS

Samples

Fifty honey samples were examined in this study. All samples were collected from Hungarian beekeepers. The collecting areas were different counties of Hungary. The samples were not heated or treated. The botanical origin was verified with pollen analysis that were: acacia (Robinia pseudoacacia) (18 samples); lime (Tilia sp.) (7 samples); rape (Brassica napus) (8 samples); sunflower Helianthus annuus) (7 samples); silk grass (Asclepias sp.) (3 chestnut samples); (Aesculus hippocastanum) (3 samples) and honeydew (4 samples). The samples were stored at room temperature in dark.

Methods

Electrical conductivity (EC)

The determination of EC was carried out with Bogdanov et al. (1997) method, in 20% (v/w) honey solution at 20°C, using a digital electrical conductivity meter (Mettler Toledo Five EasyTM FE30, Switzerland) with an electrode (Mettler Toledo LE703). Ultrapure water produced by Milli-Q water purification system (Millipore SAS, Molsheim, France) was used for the preparation of solutions. The results were expressed in millisiemens per centimetre (mS/cm).

Element content

The determination of aluminium (Al), boron (B), barium (Ba), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorous (P), sulphur (S) and zinc (Zn) was carried out with an inductively coupled plasma optical emission spectrometer (ICP-OES) (Thermo Scientific iCAP 6300. Cambridge, UK). The used reagents to the digestion were high-purity concentrated nitric acid (VWR® International BVBA, Belgium) and hydrogen-peroxide (VWR® International S.A.S., France) based on method of Kovács et al. (1996). The standard solutions were prepared from monoelemental standard solutions (1000 mg/dm³, Sharlau Chemie, Spain).

Statistics

All examination was carried out in triplicate. The applied statistical program was the SPSS version 13.0 for Windows. Applied statistical methods were the general statistics (mean, standard deviation, minimum and maximum values), and Pearson correlation. The hierarchical cluster analysis and linear discriminant analysis (LDA) were applied to categorize the honey types.

RESULTS AND DISCUSSION

Results of the determination of electrical conductivity and element content

According to the floral origin the electrical conductivity showed great variability (Table 1). The values of this parameter ranged between 0.101 and 1.036 mS/cm. The measured values were corresponding to the Codex Alimentarius Hungaricus. In floral origin honey samples (except the chestnut honey) the electrical conductivity was lower than 0.800 mS/cm. The acacia, rape and silk grass honeys showed very similar results (0.140 \pm 0.026, 0.220 \pm 0.070 and 0.196 \pm 0.029 mS/cm). In the sunflower

(0.396±0.065 mS/cm). The lime honeys samples was higher than 0.800 mS/cm. showed the highest results $(0.604\pm0.060$ The measured values were similar mS/cm) among the floral origin honeys $(0.935\pm0.076 \text{ and } 0.965\pm0.063 \text{ mS/cm})$. (except the chestnut honey). The electrical

honeys the measured values were higher conductivity of chestnut and forest honey

Table 1: The analysis of electrical conductivity and macro elements

Honey types	Statistics	EC (mS/cm)	K (mg/kg)	Ca (mg/kg)	Mg (mg/kg)	
Acacia	range	0.101-0.185	100-255	17.6-59.6	1.90-15.9	
	mean±std	0.140±0.026	164±54.2	20.9±16.7	6.57±3.96	
Lime	range	0.519-0.680	1027-1883	15.2-67.4	19.8-30.2	
	mean±std	0.604 ± 0.060	1374±291	50.2±19.6	24.2±3.67	
Rape	range	0.143-0.301	103-288	23.7-60.4	13.5-27.6	
	mean±std	0.220±0.070	209±63.9	38.6±12.3	18.3±4.78	
Sunflower	range	0.311-0.470	245-552	58.2-153	10.2-36.6	
	mean±std	0.396±0.065	412±120	93.1±32.2	22.3±9.71	
Silk grass	range	0.168-0.225	149-165	17.2-35.8	3.00-11.3	
	mean±std	0.196±0.029	157±8.00	28.0 ± 9.67	7.87±4.33	
Chestnut	range	0.850-0.998	2136-2281	51.6-59.7	25.4-31.7	
	mean±std	0.935±0.076	2197±75.2	55.5±4.06	27.6±3.58	
Forest	range	0.901-1.036	2155-2391	55.8-78.8	34.7-43.6	
	mean±std	0.965 ± 0.063	2259±108	66.7±9.44	39.9±3.96	
Total	range	0.101-1.036	100-2391	17.6-153	1.90-43.6	
	mean±std	0.370±0.289	664±767	44.1±30.3	17.1±11.4	

Honey types	Statistics	Na (mg/kg)	P (mg/kg)	S (mg/kg)
Acacia	range	1.60-11.5	27.7-92.3	6.92-30.4
	mean±std	5.23±3.53	49.9±20.4	17.6±8.76
Lime	range	5.12-7.43	23.0-42.4	31.4-39.3
	mean±std	6.03±0.76	30.7±7.83	35.5±3.08
Rape	range	6.27-16.9	50.9-71.1	20.3-43.0
	mean±std	11.2±4.19	63.7±10.5	33.2±8.22
Sunflower	range	4.66-24.5	59.8-144	17.3-35.9
	mean±std	9.18±5.72	81.7±30.6	26.9±7.96
Silk grass	range	3.49-11.6	27.1-74.7	11.5-32.7
	mean±std	7.94±4.10	45.2±25.7	23.2±10.8
Chestnut	range	10.8-18.3	66.4-84.7	38.6-44.9
	mean±std	13.7±4.00	77.8±9.95	42.3±3.36
Forest	range	12.0-19.4	115-156	85.8-89.8
	mean±std	15.9±3.57	129±19.4	87.4±1.86
Total	range	1.60-21.5	23.0-156	6.92-89.8
	mean±std	8.38±5.02	61.6±31.4	31.3±19.9

The macro and micro element content in the examined honey types was very various (Table 1 and Table 2). In each samples the potassium showed the highest concentration. Similarly to the electrical conductivity the lowest potassium concentrations were measured in acacia, rape and silk grass (164 ± 54.2 , 209 ± 63.9 and 157 ± 8.00 mS/cm) honeys following by sunflower (412 ± 120 mS/cm), lime (1374 ± 291 mS/cm), chestnut (2197 ± 75.2 mS/cm) and forest (2259 ± 108 mS/cm) honeys.

Table 2:	The ana	lysis o	f micro	element	contents
10000	1	9000 09		0101110111	000

Honey types	Statistics	Al (mg/kg)	B (mg/kg)	Ba (mg/kg)	Cu (mg/kg)
Acacia	range	0.083-1.14			0.009-0.282
	mean±std	0.481±0.307	4.89±1.96	0.052 ± 0.064	0.146±0.090
Lime	range	0.126-1.720	3.36-5.70	<ld-0.170< td=""><td>0.080-0.340</td></ld-0.170<>	0.080-0.340
	mean±std	0.762 ± 0.578	4.92 ± 0.96	0.072 ± 0.059	0.216±0.097
Rape	range	0.279-1.960	5.05-15.7	<ld-0.086< td=""><td>0.050-0.642</td></ld-0.086<>	0.050-0.642
	mean±std	0.717±0.579	10.0 ± 3.89	0.030 ± 0.034	0.251±0.192
Sunflower	range	0.103-1.540	4.46-9.88	0.007-0.238	0.098-0.457
	mean±std	0.565 ± 0.510	6.36±2.37	$0.081 {\pm} 0.080$	0.292 ± 0.142
Silk grass	range	0.590-0.814	3.65-5.74	<ld-0.061< td=""><td>0.259-0.269</td></ld-0.061<>	0.259-0.269
	mean±std	0.696±0.112	4.92±1.12	0.039 ± 0.034	0.265±0.006
Chestnut	range	1.06-1.56	2.86-4.08	0.335-0.551	0.304-0.384
	mean±std	1.37±0.274	3.40±0.619	0.429 ± 0.110	0.352 ± 0.042
Forest	range	1.77-2.56	1.70-6.71	0.078-0.995	0.649-1.030
	mean±std	2.29±0.36	4.95±2.24	0.384 ± 0.413	0.839 ± 0.161
Total	range	0.083-2.559	1.70-15.7	<ld-0.995< td=""><td>0.009-1.030</td></ld-0.995<>	0.009-1.030
	mean±std	0.781±0.642	5.83±2.91	0.104-0.171	0.268±0.215

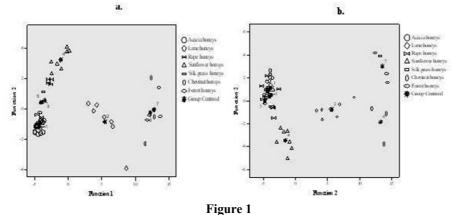
Honey types	Statistics	Fe (mg/kg)	Mn (mg/kg)	Zn (mg/kg)
Acacia	range	0.033-1.78	<ld-0.470< td=""><td>0.234-6.661</td></ld-0.470<>	0.234-6.661
	mean±std	0.679 ± 0.432	0.134±0.149	1.82±1.71
Lime	range	0.389-1.16	0.075-1.521	1.58-2.79
	mean±std	0.736 ± 0.247	0.610 ± 0.603	2.15±0.541
Rape	range	0.473-3.35	<ld-0.343< td=""><td>0.271-5.603</td></ld-0.343<>	0.271-5.603
	mean±std	1.62 ± 1.09	0.142 ± 0.137	2.39±1.84
Sunflower	range	0.123-2.45	<ld-0.183< td=""><td>0.379-4.690</td></ld-0.183<>	0.379-4.690
	mean±std	0.968 ± 0.750	0.073 ± 0.074	2.43±1.65
Silk grass	range	0.896-1.320	<ld-0.298< td=""><td>1.16-7.67</td></ld-0.298<>	1.16-7.67
_	mean±std	1.07 ± 0.22	0.164±0.151	3.52 ± 3.60
Chestnut	range	1.17-1.71	14.5-16.1	0.637-0.918
	mean±std	1.45 ± 0.27	15.4±0.58	0.798±0.145
Forest	range	2.93-3.78	2.72-21.9	0.776-1.929
	mean±std	3.37 ± 0.38	8.27±9.11	1.42 ± 0.54
Total	range	0.033-3.795	<ld-21.9< td=""><td>0.234-7.67</td></ld-21.9<>	0.234-7.67
	mean±std	1.16±0.94	1.76 ± 4.70	2.06±1.65

The forest honeys showed the highest calcium, magnesium, phosphorus, sulphur, aluminium, copper and iron concentrations. The lowest sodium and phosphorus content was determined in the lime honeys and the lowest magnesium content was measured in the acacia and silk grass honeys. The electrical conductivity is closely related to the mineral content. The correlation values is indicated in Table 3 (that were highest than 0.600). These correlations were significant at the 0.01 level. The highest correlation value was determined between the electrical conductivity and potassium content (r=0.975). This value was also high in the case of magnesium (r=0.856) and sulphur (r=0.802).

Evaluation of the Pearson correlation

	EC	Al	В	Ва	Ca	Cu	Fe
EC		0.654		0.60		0.656	
Al	0.654					0.851	0.831
В							
Ba	0.603						
Ca							
Cu	0.656	0.851					0.803
Fe		0.831				0.803	
Κ	0.975	0.632		0.628		0.616	
Mg	0.856	0.632			0.624	0.741	
Mn	0.671			0.901			
Na						0.603	
Р		0.606				0.730	0.614
S	0.802	0.732				0.830	0.682
Zn							
	17	14	34	NT	D	G	7

 Table 3: Results of the Pearson correlation ("r" values)
 Pearson correlation ("r" values)

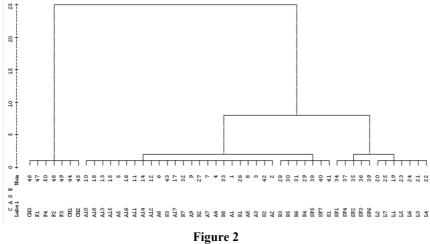

	Κ	Mg	Mn	Na	Р	S	Zn
EC	0.975	0.856	0.671			0.802	
Al	0.632	0.632			0.606	0.732	
В							
Ba	0.628		0.901				
Ca		0.624					
Cu	0.616	0.741		0.603	0.730	0.830	
Fe					0.614	0.682	
Κ		0.786	0.697			0.779	
Mg	0.786			0.636		0.861	
Mn	0.697						
Na		0.636				0.605	
Р						0.703	
S	0.779	0.861		0.605	0.703		
Zn							

Therefore these elements had strong influence to the electrical conductivity. Other element such as aluminium, barium, copper and manganese had also important effect to this parameter. Very strong correlation (r>0.800) was determined between aluminium and copper; aluminium and iron; barium and manganese; copper and iron; sulphur and copper; sulphur and magnesium.

Evaluation of the Linear Discriminant Analysis (LDA)

First, the electrical conductivity and potassium content were used to the LDA (Figure 1.a.). The values of Wilks' Lambda were 0.29 (EC) and 0.25 (K), so

the values of independent variables were similarly assisted to the function (both were significant). The first function explained the 97.6% of the variance of the independent variable and this value was 71.0% in the case of second function. The value of group centroid of acacia honeys had low values in both dimension. The values of group centroids of rape and silk grass honeys had similarly low values in the first dimension but their other values were higher. Therefore these three honey types were not separated based on these two parameters. In the case of chestnut and forest honey types the results of the LDA were similar.


The results of the LDA

These two groups could not be discriminated but these honey types were squarely separated from the other honey types. The sunflower and the lime honeys were absolutely separated from the other honey types. Taking the sulphur and magnesium into the LDA analysis the sunflower and lime honeys were squarely separated; the forest and chestnut honeys divorced from each although these samples showed similar group centroid values in the first dimension (Figure 1.b).

CONCLUSIONS

The electrical conductivity is important parameter of a honey. Due to the various

botanical origins the examined samples showed different element content. The electrical conductivity was strong relation to the potassium, magnesium and sulphur content but other elements, such as aluminium, barium, copper and manganese were influence to this parameter. The determination of mineral content is a very expensive method however the measure of electrical conductivity may be enough to the verification of the botanical origin.

Result of the Cluster analysis

Based on the electrical conductivity the lime and the sunflower honeys could be differentiated from the other honey types. The forest and chestnut honeys showed one separated groups from the other types but this parameter did not allow to the discrimination of this two types. The electrical conductivity values of this two honey types were very similar to each other and the very high values (> 0.800 mS/cm) showed the botanical origin of these two honey types.

The acacia, rape and silk grass honeys did not showed difference but studying together the electrical conductivity, colour and consistence of these honeys the authentication of botanical origin is possible. The rape honeys are crystallized (because of the ratio of fructose and glucose) but the acacia and silk grass honeys are not crystallized. The rape honeys are white or jonquil (it depends on the clarity of honey), the acacia honeys are greenish and the silk grass honeys are yellow.

The examination of great number samples may permit of the determination of minimum and maximum electrical conductivity limit values in the case of each honey types. The knowledge of the electrical conductivity and appearance of different honeys types may be enough to the determination the botanical origin.

REFERENCES

Acquerone, C., Buera, P. & Elizalde, B. (2007). Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. *Food Chemistry*, 101:695-703.

Bogdanov, S., Lüllman, C., martin, P. (1997). Harmonized method of the European Honey Commission. *Apidologie extra issue*, 1-59.

Codex Alimentarius Hungaricus. (2001). 1-3-2001/2010. Honey.

FAOSTAT. (2014).

http://faostat.fao.org/site/569/DesktopDefa ult.aspx?PageID=569#ancor Kaškonienė, V., Venskutonis, P.R. & Čeksterytė, V. (2010). Carbohydrate composition an electrical conductivity of different origin honeys from Lithuania. *LWT – Food Science and Technology*, 43:801-807.

Kovács, B., Győri, Z., Prokisch, J., Loch, J. and Dániel, P. (1996). A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. *Communications in soil science and plant analysis*, 27(5-8):1177-1198.

Pisani, A., Protano, G. & Riccobono, F. (2008). Minor and trace elements in different honey type produced in Siena County (Italy). *Food Chemistry*, 10:1553-1560.

Terrab, A., Recamales, A.F., Hernanz, D. & Heredia, F.J. (2004). Characterization of Spanish thyme honeys by their physicochemical characteristics and mineral content. *Food Chemistry*, 88:537-542.